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Abstract Understanding of the size effect on shear

banding in bulk metallic glasses (BMGs) is currently the

topic of active research but also remains under intense

debates. In this article, we provide an overview of the

recent research findings from experiments, theoretical

modeling, and atomistic/continuum simulations which are

intended to advance our knowledge related to the size

effect on the stability of shear-band propagation in BMGs.

Through the compilation of and comparison among the

results reported in the literature, we aim at providing a

comprehensive understanding of the underlying mecha-

nisms and a unified physical picture of the size effect on

shear-band propagation and its resultant ductility in BMGs.

Introduction

Bulk metallic glasses (BMGs) are alloys without long-

range translational order [1]. As compared to their crys-

talline counterparts, they possess much higher mechanical

strengths and corrosion resistance owing to the lack of

dislocation-like crystalline defects [2–5]. However, they

are also plagued by their structural amorphousness and

usually exhibit brittle-like failure under uniaxial loading

[6]. One common failure mode is the instant shear-off

failure along an inclined shear plane upon yielding, which

makes BMGs unsuitable for structural applications, at least

at the current moment, despite their merits in other

mechanical attributes [2].

The apparent origin of brittleness in BMGs is the cata-

strophic propagation of shear bands, which are a planar

defect with a thickness varying from *10 to *100 nm

[7–11]. In the literature, the shear-band nucleation is ascri-

bed to the inelastic motion and coalescence of some basic

‘flow unit’ intrinsic to BMGs [12–15], which was modeled

as either free-volume [12] or shear transformation zone

(STZ) [13]. In the original free-volume model, a vacancy-

like atomic-scale defect was assumed, which could allow an

atom to jump in and out of without changing the material’s

potential for the accommodation of inelastic deformation;

while in the STZ model, a shear intensified region consisting

of tens or hundreds of atoms was conjectured, which

behaves as an analog of dislocation to carry the plastic flow

in BMGs. Regardless of the details of the atomistic models,

shear banding takes place as the otherwise isolated shear of

the basic flow units becomes highly correlated and con-

centrated at a low temperature and a high mechanical stress

[12, 13, 16, 17]. Once this occurs to BMGs, a shear band

forms as a banded region where the subsequent plastic flows

are concentrated. In the majority of uniaxial tests, it is the

flow concentration and catastrophic shear-band propagation

that lead to the brittle-like failure in BMGs.

As the macroscopic plastic flows are accommodated by

shear bands, much of the research efforts have been

directed to the understanding of their behaviors, such as the

measurement of the temperature rise within shear bands

[18–20] and the shear-band velocities [21, 22], the simu-

lation of shear banding from either the atomistic or con-

tinuum aspect [16, 17, 23], and the theoretical modeling of
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shear banding with a size effect considered [24–29].

Despite the enormous research efforts devoted so far,

drastically different results were reported from different

research groups which may contradict each other, and

different models have been proposed which may succeed in

explaining some aspects of the shear-banding behavior but

fail in others. In this article, we aim at providing a com-

prehensive overview encompassing the recent findings

related to the size effect on shear-band propagation in

BMGs, through which we hope that more insights could be

stimulated for a better understanding of the complex shear-

band propagation behavior and the resultant ductility in

BMGs.

Origin of size effect

At a low stress or high temperature, BMGs deform via the

isolated shear of their basic flow units at the atomic scale

[12–14, 17]. While the original free-volume model has

been widely used previously by the scientific community to

rationalize the deformation behavior of BMGs [12], criti-

cisms have also been raised against the physical ground for

the existence of such a vacancy-like free-volume defect in

BMGs [30], of which the original proposal came from the

notion of hard-sphere packing for constructing an amor-

phous structure. However, for BMGs with metallic bonds,

atoms behave essentially like ‘elastic spheres’, which could

be squeezed and sheared without the assistance of any

vacancy-like defects. Through a variety of structural

studies [31–34], it was proposed that the amorphous

structure of BMGs can be simply viewed as a composite of

three ‘ingredient’ regions with different characteristic bond

lengths, i.e., the regions of atoms with long, intermediate,

and short bonds (Fig. 1a–d), and it was further suggested

that the free-volume may be referred to as the regions of

long atomic bonds that can cause structural dilatation under

shear [30, 34]. From this regard, free-volume is not a

vacancy-like defect in BMGs but can be understood as a

zone of loosely packed atoms. This new concept of ‘free-

volume zone’ shares a similar physical implication with the

classic STZ theory on the mechanical deformation of

BMGs [13], and conforms to the recent findings on their

structural characteristics [31, 32]. Furthermore, it sheds

new light on the nucleation of shear bands, which does not

demand the break-down of tightly bonded atomic clusters

but seeks a path of the least resistance, which may be the

interconnection or transition regions that bridge the tightly

bonded atomic clusters encaging the isolated free-volume

zones (Fig. 1d) [35].

To nucleate a shear band, it can be envisaged that a

sufficient number of free-volume zones needs to be joined

together for the formation of a shear-band embryo, where

strain localization starts to emerge [17, 34], and that its

subsequent growth then triggers the macroscopic yielding

in BMGs. Before the shear-band embryo evolves into a

bona fide shear band, the micro-scale yielding in BMGs

can be viewed as a continuous ‘damaging’ process entail-

ing the percolation of free-volume zones [36]. However, as

the shear-band embryo grows to a critical length, a shear

instability event takes place, leading to the spring-back of

the non-shear-banded region in BMGs [26, 37] and

accompanied by a size effect on the subsequent propaga-

tion of the bona fide shear band [26, 38]. Here it should be

noted that there could be two types of size effect associated

with shear banding in BMGs. First, one can conceive that if

a sample size is sufficiently small such that the shear-band

embryo cannot be formed or grow to the point of insta-

bility, a mature shear band cannot nucleate [38], which

corresponds to a deformation mode transition from the

inhomogeneous to homogeneous plastic flow in BMGs.

This intrinsic deformation mode transition may be also

accompanied by a size effect on strength as suggested by

Cheng [39], but the underlying physics still remains poorly

understood at the current moment with contradictory

results being reported [40–45]. In contrast, the second type

of size effect is related to the shear-band propagation or the

post-yielding behavior of BMGs, of which the phenome-

nology is more complicated and may not require a small-

size sample to take effect [28, 29]. In our view, the

majority of the size-effect phenomena reported in the lit-

erature may be categorized more appropriately as the size

effect on shear-band propagation rather than nucleation. In

what follows, we will focus on the topics associated with

the size effect on shear-band propagation while leave those

related to the size effect on shear-band nucleation as the

future work.

Size effect on shear-band propagation

Progressive versus simultaneous shear

To begin with, let us discuss how a shear band propagates

in a BMG and how a shear offset is formed due to shear-

band propagation. In the literature, shear offset has been

taken as a phenomenological variable to explain the size

effect on the ductility of a BMG [24, 26]. Based on the

experimental observations, one may propose a concept

called the ‘critical shear offset’ (CSO) to rationalize this

size effect [24], i.e., once a shear band produces a surface

offset on a BMG within one shear operation exceeding the

CSO, brittle-like shear-off failure occurs; otherwise, it

remains stable after the cessation of the corresponding

shear event. The repetition of the shear events then result

in a serrated load–displacement curve as usually seen in
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different types of mechanical tests, such as nanoindentation

[19, 46], micro- and macro-compression [26, 47]. How-

ever, there could be two seemingly contradictory inter-

pretations for the same process of shear-offset formation,

i.e., the progressive versus simultaneous shear [21].

Accordingly, there exist two versions of ‘mechanisms’ that

one may propose for formulating the size effect.

In the progressive shear model, a fracture-process zone

is assumed being continuously pushed forward by a

propagating shear front (Fig. 2a). As it reaches the outer

surface of a BMG sample, the shear event ceases with a

shear-offset emerging, which is similar to the case of

dislocation gliding for the formation of a surface step. In

such a case, the size of the CSO, kCSO, may be estimated

as that of the fracture-process zone, which is kCSO * Kc
2/

Ery [48], where Kc, E, and ry denote the fracture

toughness, elastic modulus and yield strength of a BMG,

respectively. Using the archived experimental data, Yu

et al. [49] estimated the size of the fracture-process zone

for a variety of BMGs, ranging from *200 nm for

Mg-based BMGs to *100 lm for Zr-based BMGs. This

implies that, if the shear offset was indeed produced via a

progressive shearing process, the higher is the fracture

toughness of a BMG the more ductile it would appear

when subjected to uniaxial loading. Nevertheless, the

recent experimental results obtained by Gu et al. [50] just

cast a doubt on the above reasoning.

In contrast, cooperative materials gliding along a shear

plane is assumed in the simultaneous shear model for the

formation of a shear offset, as shown in Fig. 2b. As this

occurs to BMGs, extensive plastic flows could be accom-

modated even by a single shear band [26, 47]. However, it

should be emphasized that the experimental evidence

available to date which supports the above shearing model

were provided only from compression tests [26, 47, 51], and

it is an open question if shear bands still behave the same

way in tension tests. Physically, the formation of a shear

offset via simultaneous shearing is implicative of a multi-

step shearing process in a BMG which is devoid of any pre-

existing shear bands. At the very beginning, a shear plane

has to be ‘established’ to prepare for the subsequent

simultaneous shearing, from which a shear offset can result.

If this was so, one could envisage two shearing velocities

resulting from a same yielding process. The first is the speed

of the propagating shear front or the wave speed, as shown

in Fig. 2a and the second is the gliding speed of materials

along the shear plane, as shown in Fig. 2b. In view of this, it

is likely that the wave speed may be too high to be captured

by conventional means, such as the use of strain gauges [21]

or a high speed camera [22]; as such, it can be inferred that

Fig. 1 a The three-dimensional

amorphous structure constructed

from Reverse Monte Carlo

(RMC) simulations; b clusters

of imperfect icosahedral and

cubic forms extracted from a;

c a layer inside the rebuilt three-

dimensional atomic structure;

and d the sketch of tightly

bonded atomic clusters

randomly and tightly connected

to each other by interconnecting

zones and separated by free-

volume zones for a BMG. (Note

that a and b are adapted from

[33] while c and d from [34])
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the reported shear-band speed may be more appropriately

attached to the process of simultaneous shearing, which is

relatively slow as entailing an inertial effect. In a regular

compression test, it is hard to distinguish the two shearing

processes from the load–displacement data because their

signals partly overlap at the yielding point, as shown in

Fig. 2c. However, with the acoustic emission (AE) tech-

nique, Vinogradov successfully detected the signal of the

progressive shearing, which precedes that of the simulta-

neous shearing in a compression test [52]. A similar AE

pattern was also reported by Dalla Torre et al. [53], which is

supportive of the multistep feature of the shear-band prop-

agation in BMGs under compression.

In nanoindentation of BMGs, a similar mechanism of

multistep shearing was proposed by Packard et al. [54].

They noticed that the yield strengths of BMGs would be

much overestimated in spherical nanoindentation if the

signal of a displacement pop-in was mistakenly interpreted

as an event of shear-band nucleation [54]. In view of this,

they proposed a shear-plane criterion, arguing that a mature

shear plane has to be formed before the pop-in. By

adopting the shear-plane criterion, one can then obtain the

yield strengths of BMGs from spherical nanoindenta-

tion with a similar magnitude as those from regular

compression. Physically, the shear-plane criterion is con-

sistent with a multistep shearing process and somewhat

agrees with the previous findings from the examination of

the AE signals. Apart from the experimental studies, Cao

et al. [55] also investigated the shear-banding process in a

BMG compression sample using the molecular dynamics

(MDs) simulations. As compared with the experimental

observations (Fig. 3a, b), their results showed the similar

feature of shear-offset formation, which originates from a

simultaneous shearing process after a shear plane pene-

trates and crosses the compression sample, causing local

glass rejuvenation within the shear plane (Fig. 3c).

Size-affected malleability

After reviewing the findings on the mechanisms for shear-

band propagation, we now turn to the study of the size effect

on the compressive plasticity in BMGs. As widely observed

in a variety of BMGs, people found that the smaller the

samples are the more malleable they appear in compression

tests [10, 24, 28, 29, 38, 42, 51, 56–60]. Likewise, there

could be two competing views for modeling the size effect

just like those for rationalizing the formation of a shear

offset. Based on the principle of fracture mechanics, one

can argue that the brittle-like failure corresponds to the

instability of a shear band behaving as a crack-like defect.

Once the elastic energy release rate at the shear front

reaches a critical value, a brittle-like failure occurs; other-

wise, the crack-like shear band remains stable within a

BMG sample, leading to plastic deformation (Fig. 4a). As

an alternative, one can also argue that the brittle-like failure

results from the over-slip of a shear band, which is driven by

the elastic energy released due to the spring-back of the

testing machine and the non-shear-banded regions at the

onset of yielding (Fig. 4b).

Han et al. [28] performed a systematic study of the size

effect on the compressive ductility of a Zr-based BMG. In

their work, a fracture-mechanics-based approach was uti-

lized to formulate a criterion that governs the brittle-

to-ductile transition in BMGs under compression. In doing

so, the following shear-banding ‘instability index’, S, could

be derived [28]:

S ¼ pED

4qkM

¼ pED2

4HkM

ð1Þ

where E = the Young’s modulus of a BMG; D = the

diameter of a compression specimen; kM = the machine

stiffness; and q = the aspect ratio of the specimen height

H to diameter D. Furthermore, Han et al. [28] proposed that

there should exist an intrinsic index Sc for BMGs. The

brittle-like failure takes place when S [ Sc; otherwise,

extensive serrated plastic flows could occur with stabilized

shear banding (Fig. 5a, b).

Fig. 2 The schematic illustrations of the a progressive and b simul-

taneous shear model for the formation of a shear offset; and c the

sketch of a typical serrated load–displacement curve that is keyed to a

sequence of shear-plane establishment and shear-offset formation

under compressive loading
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Note that the assumption of Han et al. [28] conforms to

the physical process of progressive shearing. By compari-

son, one may develop a different ‘size-effect’ model based

on the notion of simultaneous shearing [29, 56]. By sim-

plifying the elastic support of a BMG compression sample

as a spring (Fig. 4b), Cheng et al. [56] derived a new

instability index Snew, which is:

Snew ¼ H 1þ Sð Þ ¼ H þ pE

4kM

� �
D2 ð2Þ

Following Han et al. [28], Cheng et al. also argued that the

brittle-like fracture takes place when Snew [ Sc [56].

Regardless of the difference in the functional form, Eqs. 1

and 2 predict the similar trend of the machine-stiffness

effect, that is, with the increasing machine stiffness, kM,

and the decreasing shear-band instability index S or Snew,

shear banding tends to a more stable state under com-

pressive loading.

Fig. 3 a Axial load versus

cross-head displacement for a

small specimen having a

diameter of 1.35 mm. The

compression tests were

interrupted following crosshead

displacements of approximately

0.2 mm; b the morphology of

the deformed compression

specimen; and c the growth of

the shear offsets on both sides of

the sample, at larger overall

sample strains ranging from

e = 9.2 to 12%, after the

localization (deformation band)

penetrates across the entire

sample (Note that a and b are

adapted from [51] and c from

[55])

Fig. 4 The sketch of two types of models for formulating the

dimension-induced brittle-to-ductile transition in BMGs under com-

pression: a the fracture mechanics model and b the simultaneous slip

model (Note that the springs represent the compression platens)

J Mater Sci (2012) 47:55–67 59

123



Undoubtedly, the shear-band instability index provides a

convenient way to understand the machine-stiffness effect

in BMGs. However, it is still not clear though of the

structural origin for the brittle-to-ductile transition in

BMGs, which is related to the material’s intrinsic proper-

ties. Furthermore, the mechanical effect of the elastic

support may be over-simplified as that of an elastic spring.

Here, one can do a thought experiment. Suppose a BMG

sample sitting on a half infinite space, such as in micro-

compression tests [26], the ‘machine’ stiffness, i.e., the

rigidity of the elastic substrate, now goes to infinity

because of its unbounded size. In view of this, Eq. 1 then

predicts a zero elastic energy transfer from the substrate

and an always stable shear-banding scenario; while Eq. 2

predicts that only the height of a BMG sample matters for

the size effect. However, physically, even when the size of

the elastic support extends to infinity, spring-back will also

occur locally underneath the BMG sample. Under com-

pressive loading, the latter would behave like a punch

indenting into an elastic substrate. As such, the elastic

energy released from the elastic substrate cannot be zero at

the onset of yielding. Some amount of elastic energies will

still be transferred to the BMG sample through their con-

tact area. As a result, the total elastic energy release should

depend on the diameter of a BMG sample and the related

size effect also involves the sample diameter.

Based on the consideration of energy balance, Yang

et al. [29] derived the following criterion that involves two

length scales for the size effect of BMGs:

Lext ¼ H þ aD ð3aÞ

Lint ¼
2Cc

Ee2
Y sin h

ð3bÞ

Here Lext is termed as the extrinsic length scale scaling

with the elastic energy release from a bulk region; while

Lint as the intrinsic length scale scaling with the critical

plastic energy dissipation rate, Cc, on a shear plane, i.e., the

plastic energy dissipation per unit area of a shear plane at

the brittle-to-ductile transition. Presumably, this critical

energy dissipation rate, Cc, should be only material

dependent and could be accessed through testing different-

sized BMG samples at a series of loading rates. Recently,

Wu et al. [61] performed a size-effect study on three types

of BMGs through regular compression tests. Interestingly,

their results showed that the energy dissipation rate at the

fracture point is size independent even though the mea-

sured malleability varies with sample size. To a certain

extent, this finding suggests the plausibility of using a size-

independent energy variable to interpret the size effect in

BMGs, which is consistent with the notion of the critical

energy dissipation rate as proposed by Yang et al. [29]. In

Eq. 3a, a is a dimensionless factor being a function of the

normalized elastic modulus and size of a BMG sample

relative to those of its elastic support, and diminishing with

the increasing support rigidity, of which the functional

form may be derived using finite element (FE) simulations

[26, 29, 60] (please see ‘‘Appendix’’ section for a further

discussion of the a parameter); ey is the yield strain (*2%)

of BMGs [62]; and h is the shear-band inclination angle

under compression (*42�) [63]. If Lext is greater than Lint,

the shear-band over-slips, causing an instant shear-off

failure and sample fracture upon yielding; on the other

hand, if Lext is less than Lint, the shear-band slips in a jerky

way dissipating the released elastic energy within a shear

operation, leading to serrated plastic flows.

For the sake of comparison, one may construct a defor-

mation map for the size effect with the above-mentioned

Fig. 5 a Engineering stress–strain curves of BMG samples measured

for a range of controlled values of sample size and machine stiffness;

b SEM micrographs of 4 mm 1:1 samples tested at a machine

stiffness of (left) 31,300 N mm-1, exhibiting an unstable behavior of

shear banding by forming one dominant shear band, and (right)
159,000 N mm-1, exhibiting a stable behavior of shear banding by

forming dense shear bands, and thus uniform deformation, respec-

tively (the figures are adapted from [28])
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models. To this end, the equations for the size-effect models

can be recast as follows for depicting the ‘boundary’ of the

brittle-to-ductile transition:

Han’s Model ½28� : H ¼ pED2

4SckM

ð4aÞ

Cheng’s Model ½56� : H ¼ Sc �
pE

4kM

� �
D2 ð4bÞ

Yang’s Model ½29� : H ¼ 2Cc

Ee2
Y sin h

� aD ð4cÞ

As shown in Fig. 6a–b, all the models predict the similar

trend of the machine-stiffness or substrate effect, the

increase of which expands the stable shear-banding region,

rendering BMGs with a greater ability to deform plastically

in compression tests. However, Han’s model predicts a

reverse trend of the sample height effect as compared to the

others. According to Han et al. [28], at a given sample

diameter and machine stiffness, the higher is a BMG

sample the more ductile would it appear. This predicted

trend is somewhat contradictory to the reported experi-

mental findings [29, 56, 60], which in turn implies that

simply treating shear bands as cracks under compressive

loading is not appropriate for BMGs, as also cautioned in

Ref. [64].

Size-affected temperature rise within shear band

As the elastic energy is released to drive shear banding, it

first goes to the plastic energy consumption and is then

dissipated away completely or partially as heat, causing

local temperature rise within the shear band. Since the

elastic energy release is size dependent, it could be natu-

rally conceived that this local temperature rise should be

also size dependent. The size dependence of the tempera-

ture profile around a shear band has been foreseen in

theoretical modeling [56, 65] and recently been experi-

mentally verified by Miracle et al. [66]. To capture such a

size effect, Cheng et al. [56] provides a simple model by

assuming that the heat flux dumped into a shear band scales

with the shear-band sliding speed and the strength reduc-

tion is proportional to the temperature rise on the shear

plane. With these assumptions, the kinetic equation gov-

erning the vertical displacement, x, of a BMG compression

sample can be cast as follows:

4M

pD2

d2x

dt2
¼ ry �

Ex

H 1þ Sð Þ

� �

� rf �
AE2eY sin h

2qcpTg

ffiffiffiffiffiffi
pa
p

Z t

0

dx

dt
t � sð Þ dsffiffiffi

s
p

0
@

1
A ð5Þ

where M is the specimen’s effective inertia; ry is the

compressive yield strength; rf is the resistance of BMG at

the onset of shearing; cp is the heat capacity; q is the mass

density; a is the thermal diffusivity; and Tg is the glass

transition temperature. Solving Eq. 6a with the appropriate

initial conditions x(0) = 0 and dx(0)/dt = 0 then gives the

temperature rise within the shear band at a given size of a

BMG sample and machine stiffness. Figure 7a–c show the

typical results obtained by Cheng et al. for the BMG sam-

ples of a different size but with the same aspect ratio of 2:1

and machine stiffness, from which it can be seen that the

sample diameter affects the vertical displacement x (the

displacement jump caused by shear banding in compression

tests), the temperature rise DT, and the vertical sliding speed

dx/dt of a shear band. As the sample diameter is increased,

the peaks of the attainable temperature rise (Fig. 7c) and

sliding speed (Fig. 7b) are raised. Accordingly, the vertical

displacement jump is also widened, which generally agrees

with the experimental findings (Fig. 7a).

Regarding the temperature rise in a shear band, a more

general model was developed by Zhang et al. [65]. In

Zhang’s work, a shear band of a unit length is considered,

which has a zero thickness and is subjected to a combi-

nation of shear and compressive stress. When the unit shear

Fig. 6 The deformation mechanism map for the size effect in

compression of BMGs constructed with the a Han’s model [28],

b Cheng’s model, and c Yang’s model for the case of a independent

of D (Note that the cartoon to the right of the map illustrates the

boundary condition and shear-band configuration used in different

models)
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band is sliding, unloading occurs within a shear relaxed

region, which provides the local elastic energy release and

evolves in thickness with the local strain rate, the local

temperature rise DT, and the instantaneous shear offset, w,

as shown in Fig. 8a. Here, the size effect manifests itself as

the influence of the total shear offset, wc, on DT. For

modeling, a Mohr–Coulomb law was adopted for the

yielding of BMGs and the reduction of the intrinsic yield

strength was assumed due to a combined effect from the

configurational change (wc) and the local temperature rise

(DT). Through the numerical simulation, some intriguing

results were obtained, as shown in Fig. 8b, from which it

can be clearly seen that the temperature rise within a shear

band not only shows the dependence of shear offset (the

size effect), but also is affected by the normal stress and

strain rate (the details of the simulation have been descri-

bed in Ref. [65]). At a low normal stress and a small shear

offset, the strain rate effect can be neglected; however, it

becomes non-negligible with the increasing normal stress

and shear offset. The results of these modeling efforts are

generally consistent with the experimental findings repor-

ted in the literature [18, 26, 56, 66]. For instance,

Lewandowski et al. [18] devised the fusible coating method

to measure the local temperature rise around the shear

bands in the Zr-based bend bars, and reported that there

could be a temperature surge of a few hundreds or even

thousands of Kelvin increase when the shear bands hit the

sample surface melting the tin coatings nearby; while from

relatively small samples, the local temperature rise related

to shear banding was reported insignificant [26, 56, 66]. On

tensile testing of a Zr-based BMG, Liu et al. [67] also

observed the melting of shear bands, and that molten

droplets even flowed out of shear band cracks.

Intrinsic length scale for compressive plasticity

For crystalline metals, it would be straightforward to quote

their ductility obtained from one sample size for their later

structural use even at a much larger scale, since the dis-

location-mediated plasticity is generally size insensitive at

the macroscopic scale. However, it would be misleading if

the material deformability measured at one sample size for

BMGs were referred to as a size-independent ‘intrinsic’

property. Furthermore, even at the same sample size, the

same BMG may exhibit different ductility with a different

elastic boundary condition [28, 29, 56]. This complexity

poses a serious question to us, i.e., how the intrinsic mal-

leability of BMGs could be assessed and characterized. To

address this question, we may now turn to the models

developed for the size effect in BMGs [28, 29, 56]. In

general, we may propose the following general criterion for

the phenomenon of size-induced brittle-to-ductile transi-

tion in BMGs:

Brittle-like failure: Lext [ Lint ð6aÞ
Serrated plastic flows: Lext� Lint ð6bÞ

in which:

Lext ¼ H þ ~aDn ð6cÞ

Lint ¼
2Cc

Ee2
Y sin h

ð6dÞ

where ~ais a dimensionless factor accounting for the effect

of the machine stiffness or the substrate rigidity but inde-

pendent of the sample size; and the exponent n is a factor

Fig. 7 Evolution of a vertical displacement (x), b vertical sliding

speed, and c temperature in the shear band (T), all as a function of

shear-band-sliding time t. Solid lines are model predictions with the

T rise considered; dotted lines are model solutions without the

T effect; vertical bars represent the range of experimentally measured

step size for corresponding samples (see Ref. [56] for details) (Note

that the figures are taken from Ref. [56])
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that accounts for the effect of the elastic boundary (=1 for a

infinitely large elastic support as in microcompression [26],

and =2 for a spring support as assumed for regular com-

pression [56]). Equation 6c defines the extrinsic length

scale Lext, which can be experimentally manipulated; while

Eq. 6d defines the intrinsic length scale, Lint, which is

invariant with the testing environment and sample size, and

provides a quantitative measure to assess the intrinsic

deformability of BMGs.

As shown in Fig. 9a, the intrinsic length scale Lint

dominates the size of the stable shear-banding region,

while the extrinsic length scale Lext mainly determines the

shape of its boundary. For two types of BMGs, they may

appear equally ‘ductile’ in small volumes; however, they

will exhibit different failure behaviors as their size crosses

the boundary of the size-induced ductile-to-brittle transi-

tion. For the so-called ‘ductile’ BMGs, they may possess a

relatively large Lint and could therefore show plastic

deformation even in a bulk form, such as the Zr-based

BMGs with Lint * 10 mm (Fig. 9b); in contrast, for the

so-called ‘brittle’ BMGs, they have a relatively small Lint

and therefore, usually exhibit brittle-like failure in a bulk

form, such as the Fe-based BMG with Lint * 20 lm

(Fig. 9b).

From Eq. 6, it is evident that, to achieve desirable

deformability, one need to have a BMG with a smaller

shear-band inclination angle h, a lower elastic limit eY, a

smaller Young’s modulus E, and a higher critical energy

dissipation rate, Cc. According to Sun et al. [68] and Zhao

et al. [23], the shear-band inclination angle h is related to

the shear-induced dilatation, Dm/m, or the physical con-

finement of the loosely packed free-volume zones (or

STZs) (Fig. 1d). A stronger confinement on free-volume

zones leads to a lower volume dilatation, resulting in a

smaller h given that cot 2hð Þ ¼ � Dm
m

� ��
_c, where _c is the

local shear strain rate [23]. In the literature, the eY values

were reported ranging from *0.014 to *0.022 [62], sig-

nifying the varying levels of difficulty in nucleating a shear

band in BMGs. For a larger Lint, a lower eY is preferred,

which corresponds to a weaker resistance of BMGs against

shear-band nucleation. Furthermore, the Young’s modulus,

E, of a BMG scales with its glass transition temperature Tg

according to Ref. [69]. Therefore, if other conditions

remain unaltered, lowering Tg is conducive to lengthening

Lint and consequently ductilizing a BMG. Apart from those

physical properties, the critical energy dissipation rate Cc,

which denotes the ability of a shear band for absorbing

mechanical energy, also plays an important role in deter-

mining Lint. Through the trends of the size-affected shear

offset exhibited by different BMG micropillars, Yang et al.

[60] recently uncovered that Zr- and Cu-based BMGs

possess a stronger ability of energy dissipation than

Mg- and Fe-based BMGs under compression, which may

explain why some BMGs with an intermediate modulus

appear more ‘ductile’ than those with a high or low mod-

ulus. Based on the above discussions, it is clear that there

seems to be multiple routes one can employ for ductilizing

BMGs, i.e., to expand the stable shear-banding region;

however, each route may involve the tuning of the physical

parameters in a collective way, which cause not only

positive but also negative effects, leading to a trade-off. For

instance, it is well known that BMGs with a high Tg or

modulus tend to exhibit brittle failure under uniaxial

loading, such as Fe-based BMGs, which may be explained

as Lint * 1/E; however, the over-reduction of Tg may

impair the energy dissipation ability (a low Cc) of a BMG,

such as the Mg-based BMGs. As a consequence, the BMGs

of a low modulus may also appear somewhat as brittle as

those of a high modulus.

Fig. 8 a The sketch of the shear-band model developed by Zhang

et al. and b the typical results showing the temperature rise in the shear

band core as a function of strain rate, critical shear displacement, and

normal stress. Note that normal stress has a higher influence on the

temperature rise than strain rate (b is adapted from Ref. [65])
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Different from the above reasoning, Lewandowski et al.

proposed that the apparent brittleness and plasticity in

BMGs should be correlated with their l/B ratio or

equivalently, their Poisson’s ratio [70], where l and

B denote the shear and bulk modulus, respectively.

According to the authors [70], such an idea originated

from the behavior of crystalline materials, whose fracture

mode is governed by the competition between cleavage

fracture and dislocation emission. When the l/B ratio

exceeds a critical value, the material tends to fail in a

brittle manner as its ability to resist bond breaking, which

scales with B, is overweighed by that to dislocation

emission, which scales with l; conversely, it will fracture

in a plastic manner if possessing a small l/B ratio. As

shown in Fig. 10, the experimental results showed a good

correlation between the fracture toughness of BMGs and

their l/B ratios. However, as discussed previously, the

failure mechanism in compression tests differs from that

of fracture. The former is due to shear-band over-slip,

while the latter to crack growth; therefore, it is unlikely

Fig. 9 a Comparison of ductile and brittle BMGs under compressive

loading with the deformation mechanism map for size effect; b the

variation of the experimentally measured compressive ductility of the

Zr-based BMGs with the estimated extrinsic length scale, indicative

of an intrinsic length scale around *10 mm; and c the deforma-

tion mechanism map constructed from the microcompression of

a Fe-based BMG showing an intrinsic length scale of *20 lm.

(Note that b is adapted from [29])
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that the same mechanism which governs the fracture of

BMGs should be also applicable to that in uniaxial com-

pressive loading. Furthermore, the size effect is also a

strong proof that it is inappropriate to use the l/B ratio as

the sole parameter to infer the intrinsic brittleness/plas-

ticity in BMGs [50].

Before ending this section, it is worth mentioning that

the size-effect models developed so far has been mainly

checked with the compression data [28, 29, 56, 60].

However, even the BMG possessing a great malleability

shows limited or zero plasticity under tension [71]. Such a

phenomenon of tension–compression asymmetry has been

noted for many years [72], and could be apparently

attributed to the stress effect on void growth in BMGs

[63, 67, 73]. Under tensile loading, voids can easily grow

in a shear band, causing premature fracture upon yielding;

while under compressive loading, their growth is sup-

pressed, leaving the opportunity for a shear band to prop-

agate stably for serrated plastic flows. Bearing this in mind,

it can be envisaged that there should be a competition of

deformation mechanisms between shear-band slip and void

growth in BMGs under tensile loading. For bulk samples,

shear slip may be interrupted by shear-induced cracking,

causing the material to fail in a brittle manner with a crack-

like fracture morphology [67]; while for small samples,

void growth may be retarded and therefore, a similar

sample size effect on shear-band propagation as in com-

pression tests rises again in tension tests [24, 40]. To fully

understand the mechanism of deformation and fracture in

BMGs under tensile loading, additional research efforts are

still needed.

Concluding remarks

As compared to their crystalline counterparts, BMGs gain

their superb mechanical strength seemingly at the sacrifice

of their ductility. Therefore, over the past years, tremen-

dous research efforts have been devoted to finding a recipe

that can make an intrinsically ductile BMG. However,

through the recent research findings, it can be readily

perceived that MGs are neither intrinsically brittle nor

ductile, at least under compressive loading. The apparent

brittleness usually witnessed at the macroscopic scale

results from a shear-banding size effect, which can be

Fig. 11 The illustrated experimental set-up for a compression test on

a BMG sample

Fig. 10 The correlation of

fracture energy G with elastic

modulus ratio l/B for the

variety of as-cast BMGs as

originally presented in Ref. [70]
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traced back to the multistep nature of shear banding in

BMGs under compressive loading. While BMGs may

display extensive plastic flows in a compression test when

their size falls within the stable shear-banding region,

however, it has been observed that most likely they still

fracture in a brittle manner in a tension test. This tension–

compression asymmetry is implicative of a stress state

effect on shear-band propagation in BMGs, which remains

as an open question that warrants further research.
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Appendix: The a parameter and the extrinsic length

scale Lext

The theoretical derivation of the a parameter has been

detailed in our recent work [60]. For the information of

readers, the general expression for the a parameter is

introduced here. According to the dimensional analysis, the

a parameter can be expressed as follows for a cylindrical

BMG sample compressed between two cylindrical com-

pression platens:

a ¼
X2

i¼1

Pi
D

Di
;
Hi

Di
; mi

� �
E

Ei

 !
p
4

ð7Þ

where the symbols D, H, E, and m denote the object

diameter, the object height, the Young’s modulus, and the

Poisson’s ratio, respectively. For the BMG sample, those

symbols carry no subscript; while for the compression

platens, they are labeled with a subscript (1 = upper platen

and 2 = lower platen), as shown in Fig. 11. Here P rep-

resents a dimensionless function of which the exact func-

tional form is not known yet.

For microcompression tests, the upper platen is a dia-

mond punch that may be assumed as a rigid body

(E1 = ?), and the lower one is the base material, which

can be regarded as an elastic half infinite space (D1 = ?
and H1 = ?) and possesses the same material properties

as the micropillar. In such a case, the functional form of the

a parameter is reduced to a ¼ a mð Þ, which only depends on

the Poisson’s ratio of the BMG. Through the FE simula-

tion, one may fit the simulated values of the a parameter to

a linear function, which reads a ¼ 4 5:6� 4mð Þ=p [26].

Assuming an average Poisson’s ratio of *0.35 for BMGs,

the a parameter can be then estimated as around *5.

As such, the corresponding extrinsic length scale Lext can

be expressed as Lext ¼ H þ 5D.

For regular compression tests, the a parameter is a

multivariable function. For simplicity, let us assume that

both upper and lower platens are made of the same material

and possess the same size and geometry (E1 = E2,

D1 = D2, H1 = H2, and m1 = m2). As such, Eq. 7 can be

simplified to:

a ¼ P1

D

D1

;
H1

D1

; m1

� �
E

E1

p
2

ð8Þ

In principle, FE simulations can be performed to attain a

proper functional form for P1 that fits the elastic boundary

conditions set in a real experiment as seen in [26]. After

that, the corresponding extrinsic length scale Lext can be

derived and then utilized for studying the size effect in a

quantitative manner. Here, for the sake of demonstration,

we assume the following functional form for P1 for a finite

platen size without resorting to the FE simulations:

P1 ¼
D

D1

� �x
H1

D1

� �y
2f m1ð Þ

p
ð9Þ

where the exponent x, y and the single-variable function f

are to be fitted out by FE simulations. Substituting (9) into

(3a) then gives the corresponding extrinsic length scale

Lext:

Lext ¼ H þ D

D1

� �x�1
H1

D1

� �y�1 pE

4kM

f m1ð ÞD2 ð10Þ

in which kM ¼ pE1D2
1

�
4H1 is the machine stiffness. Now,

if we further assume x = y = f(m1) = 1, (10) is therefore

simplified to:

Lext ¼ H þ pE

4kM

D2 ð11Þ

Comparing (11) to Eq. 2 in the main text, it can be easily

seen that the general size-effect model described here is

now reduced to the size-effect model developed by Cheng

et al. [56] and their proposed shear-band instability index

(Snew) is equivalent to the extrinsic length scale, Lext, of a

special form.
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